Những câu hỏi liên quan
Nguyễn Việt Nga
Xem chi tiết
alibaba nguyễn
1 tháng 12 2016 lúc 22:55

Tử là mũ 2 thật hả bạn. Mũ 3 thì giải được còn mũ 2 thì vẫn chưa nghĩ ra

Bình luận (0)
Nguyễn Phan Hoài Nam
4 tháng 12 2016 lúc 19:32

1 phải  ko bn

Bình luận (0)
Tuấn Nguyễn
Xem chi tiết
Mèo Miu
8 tháng 9 2016 lúc 21:47

ui..khó qw ~ mún giải lắm nhưng hk đc...e ms lp 7 thoy ak***ahihi^^

Bình luận (0)
phan văn phước
10 tháng 9 2016 lúc 16:02

nè  đọc cái bất đnagử thức shur và kĩ năng đặt ẩn p-q-r đi là giải ra , nên tìm kiếm trong ộng tổ google đi nhé\

Bình luận (0)
Lê Thị Ngọc Duyên
Xem chi tiết
Leonah
Xem chi tiết
An Vy
Xem chi tiết
Quach Bich
Xem chi tiết
Akai Haruma
17 tháng 1 2018 lúc 12:11

Lời giải:

Bài 1:
Áp dụng BĐT Cô -si ta có:

\(a^3+1+1\geq 3\sqrt[3]{a^3}=3a\)

\(b^3+1+1\geq 3\sqrt[3]{b^3}=3b\)

Cộng theo vế:

\(a^3+b^3+4\geq 3(a+b)\)

\(\Leftrightarrow 6\geq 3(a+b)\Leftrightarrow a+b\leq 2\)

Vậy \((a+b)_{\max}=2\). Dấu bằng xảy ra khi \(a=b=1\)

Bài 2:

Áp dụng BĐT Cô- si ta có:

\(\frac{a^3}{b+c}+\frac{b+c}{4}+\frac{1}{2}\geq 3\sqrt[3]{\frac{a^3}{8}}=\frac{3}{2}a\)

\(\frac{b^3}{c+a}+\frac{c+a}{4}+\frac{1}{2}\geq 3\sqrt[3]{\frac{b^3}{8}}=\frac{3}{2}b\)

\(\frac{c^3}{a+b}+\frac{a+b}{4}+\frac{1}{2}\geq 3\sqrt[3]{\frac{c^3}{8}}=\frac{3}{2}c\)

Cộng theo vế:

\(T+\frac{1}{2}(a+b+c)+\frac{3}{2}\geq \frac{3}{2}(a+b+c)\)

\(\Leftrightarrow T\geq a+b+c-\frac{3}{2}\)

Theo BĐT Cô-si: \(a+b+c\geq 3\sqrt[3]{abc}=3\)

\(\Rightarrow T\geq 3-\frac{3}{2}=\frac{3}{2}\)

Vậy \(T_{\min}=\frac{3}{2}\Leftrightarrow a=b=c=1\)

Bình luận (1)
Akai Haruma
17 tháng 1 2018 lúc 12:35

Bài 3:

Điều kiện đề bài tương đương với:

\(a\leq 1; b+2a\leq 4; 2c+3b+6a\leq 18\)

Ta có:

\(A=2\left (\frac{1}{6a}+\frac{1}{3b}+\frac{1}{2c}\right)+\frac{1}{3}\left(\frac{1}{2a}+\frac{1}{b}\right)+\frac{1}{2a}\)

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{1}{6a}+\frac{1}{3b}+\frac{1}{2c}\right)(6a+3b+2c)\geq (1+1+1)^2\)

\(\Rightarrow \frac{1}{6a}+\frac{1}{3b}+\frac{1}{2c}\geq \frac{9}{6a+3b+2c}\geq \frac{9}{18}=\frac{1}{2}\) (1)

\(\left(\frac{1}{2a}+\frac{1}{b}\right)(2a+b)\geq (1+1)^2\)

\(\Rightarrow \frac{1}{2a}+\frac{1}{b}\geq \frac{4}{2a+b}\geq \frac{4}{4}=1\) (2)

\(\frac{1}{2a}\geq \frac{1}{2.1}=\frac{1}{2}\) (3)

Từ (1)(2)(3) suy ra \(A\geq 2.\frac{1}{2}+\frac{1}{3}.1+\frac{1}{2}=\frac{11}{6}\)

Dấu bằng xảy ra khi \(a=1; b=2; c=3\)

Bình luận (0)
Nguyễn Huyền Anh
Xem chi tiết
Luân Đào
21 tháng 5 2019 lúc 19:02

a.

\(A=\frac{1}{ab}+\frac{1}{a^2+b^2}=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\)

\(\ge\frac{4}{a^2+2ab+b^2}+\frac{1}{2ab}\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=6\)

Dấu "=" khi \(a=b=\frac{1}{2}\)

b.

\(B=\frac{2}{ab}+\frac{3}{a^2+b^2}=3\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\)

\(\ge3\cdot\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=14\)

Dấu "=" khi \(a=b=\frac{1}{2}\)

c.

Ta có:

\(x^2+y^2\ge2xy\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\) với mọi x,y

Áp dụng ta có:

\(C=\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\ge\frac{\left(a+b+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(1+\frac{4}{a+b}\right)^2}{2}=\frac{25}{2}\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

2.

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2\right]\ge\left(\sqrt{x}\cdot\frac{a}{\sqrt{x}}+\sqrt{y}\cdot\frac{b}{\sqrt{y}}\right)^2\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{a^2}{x}+\frac{b^2}{y}\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

Áp dụng nó ta chứng minh được:

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

Áp dụng vào bài làm:

\(D=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\)

\(\ge\frac{\left(a+b+c\right)^2}{ab+ca+bc+ab+ca+bc}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)
Thắng Nguyễn
Xem chi tiết
Vũ Tri Hải
18 tháng 5 2017 lúc 23:17

đặt x = a; y = b/2; z = c/3. khi đó ta có \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\le1.\)

quy đồng, nhân chéo ta được (1+x)(1+y) + (1+y)(1+z) + (1+z)(1+x) \(\le\)(1+x)(1+y)(1+z).

nhân phá ngoặc, rút gọn ta được x + y + z + 2 \(\le\)xyz. (1)

mặt khác ta có \(1\ge\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}\ge\frac{9}{x+y+z+3}\)

nên x+ y + z \(\ge\)6 (2)

từ (1) và (2) suy ra xyz \(\ge\)8 hay S = abc \(\ge\)48.

dấu bằng xảy ra khi x = y = z = 2 hay a = 2; b = 4; c = 6.

vậy Min S = 48.

Bình luận (0)
Thắng Nguyễn
19 tháng 5 2017 lúc 7:08

hình như cái BĐT ở dưới chỗ "Mặc khác ta có" sai

Bình luận (0)
Thắng Nguyễn
19 tháng 5 2017 lúc 7:11

à nhầm sr

Bình luận (0)
An Vy
Xem chi tiết
Trần Phúc Khang
8 tháng 7 2019 lúc 23:01

\(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ac}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)

Áp dụng BĐT cosi

\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge\frac{3}{4}a\)

Tương tự 

=> \(A\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{2}\left(a+b+c\right)=\frac{1}{4}\left(a+b+c\right)\)

Lại có \(\left(a+b+c\right)\ge\frac{9}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{9}{1}=9\)

=> \(A\ge\frac{9}{4}\)

MinA=9/4 khi a=b=c=3

Bình luận (0)